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ABSTRACT 
One of the classic problems in statistics is to determine whether a group of observations 

can be characterized as statistically different from some other group. In the case of the well-

known two-sample t-test, observations are univariate (1-dimensional) and underlying 

probability distributions are normal (or approximately normal). However, in real-world 

problems, the number of covariates may be very large and there may be little known about 

underlying distributions. Finding powerful tests for group differences in this general 

multivariate case presents challenges, and this difficult case has attracted recent research 

interest. 

In the setting of graph-theoretic approaches, the first consequential two-sample test was 

introduced by Friedman and Rafsky (FR1979) as a multivariate generalization of the Wald-

Wolfowitz runs test. The rationale of this test and newer, similar tests is that, if two samples are 

from different distributions, observations would be preferentially closer to others from the 

same sample than those from the other sample. 

This project explores the tradeoffs between graph density, test power, and computational 

costs in a variety of scenarios and recommends guidelines for edge-counting criteria. The 

benefits and drawbacks of using denser subgraphs are analyzed to extend recent findings in 

statistical literature. A power simulation study is used to examine state-of-the-art tests in 

competition under the same conditions and compare performance. A novel exploratory 

approach is then introduced that enables finding group differences at lower computational costs.  

Next, the efficacy of a newly-proposed dissimilarity measure for mixed data, 

“treeClust”, is investigated using real-world medium-sized and large-sized data sets.  

Finally, we introduce a new test that involves ranking all of the edges with respect to 

weight instead of selecting a subset of edges based on some other more time-consuming 

optimality criterion, as is done in other such tests. This Cumulative Cross-Count (CCC) test is a 

competitively powerful, user-friendly, nonparametric, multivariate, multi-group test. We derive 

moment information and employ permutation approaches to approximate p-values. 
 

KEYWORDS: Nonparametrics; Graph-theoretic procedure; Two-sample hypothesis 

testing; Minimum spanning tree; Minimum non-bipartite matching; Tree-based dissimilarity 
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I.          INTRODUCTION 
 
 

The ability to detect subtle changes in systems that are subject to random variability is a 

central problem in statistics that has great practical importance. Decision-makers in a wide 

variety of industries often want to determine whether or not two groups of observations can be 

characterized as being statistically different. For example, consider these meaningful real-world 

applications: 

- Healthcare – Is the condition of patients who receive a new drug better than that of 

those who received a placebo? 
 

- Industry – When multiple factories are used to manufacture the same product, are 

consistency and uniformity standards maintained across different plants? 
 

- Business – Is a company more successful after implementing a new sales tool?
 

- Government – Does the enforcement of a new law lead to a better functioning 

society? 

- Equal Opportunity – Is the work environment experience different based on gender or 

race?

- Military – Is the overall health of a helicopter after the completion of a mission 

different than before? 
 

The classic approach to these two-sample problems, often first encountered in an 

undergraduate-level statistics course, is referred to as the two-sample location t-test. Based on 

the well-known Student’s t-test, which was developed in the early 1900’s by William Gossett 

(under the pen name “Student”), the two-sample location t-test seeks to determine if there is a 

statistically significant difference between two group means (averages). More precisely, the 

two-sample location t-test is used to test the null hypothesis that two populations have equal 

means.  

 In order to better understand the concept of statistical significance, we introduce some 

basic statistical terminology. In statistics, a population is a set of similar items or events which 

is of interest for some question or experiment (e.g. the set of all college students in Maryland, 

the set of all trucks manufactured in Detroit, the set of all women in the military, etc.). In 



5

general, the goal of statistical analysis is to produce information about some specified 

population. Typically, however, the population is very large, making it impractical or 

impossible to systematically acquire and record information about every element of a given 

population. Thus, a reasonably-sized subset of the population, called a data sample, is collected 

to represent the population in a statistical analysis. The elements of a sample are commonly 

referred to as observations. Statistics are then calculated from the sample to estimate certain 

characteristics of the larger population, such as its mean or standard deviation.  

Clearly, since the sample does not include all members of the population, statistics on 

the sample are not perfectly precise estimates of the population. For example, the average 

grade-point-average of 10 randomly-selected students at the U.S. Naval Academy is typically 

not the same as the average grade-point-average of all 4,500 students at the school. In order 

words, sample statistics (such as sample mean and sample standard deviation) depend on the 

specific observations in the sample and will vary from sample to sample. The difference 

between the sample and population values is called sampling error. With these basic ideas in 

mind, the discussion now returns to the concept of statistical significance.  

 When testing for a difference between two groups of data, we proceed in the following 

manner: 

1.) Assume that there is no underlying difference between the two groups of data (i.e. 

both sets of data were drawn from the same population, or distribution). 

2.) Based on the collected data, calculate the probability of obtaining a result at least as 

extreme as that which is present (given that there is no underlying difference between 

the two groups). This calculated probability is called a p-value. 

3.) Compare this p-value to a predetermined significance level (0.05 is commonly used). 

If the p-value is less than the significance level, conclude that a statistically 

significant difference exists between the two groups of data. Otherwise, no 

conclusion may be drawn. 

This process for determining statistical significance is known as statistical hypothesis 

testing. First of all, note that we never conclude that two groups of data are statistically “the 

same”. Secondly, note that the determination of statistical significance depends on the 

predetermined significance level. A lower significance level requires a lower p-value (i.e. a more 

“extreme” result from the collected data) in order to conclude that a difference exists between 
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two groups. In a sense, the use of statistical hypothesis testing to determine whether a group 

difference exists is similar to the “presumption of innocence” in the U.S. court of law. Compare 

the following description of the U.S. court of law to the three numbered points listed above and 

observe the similarities: 

1.) Upon entering the courtroom, the defendant is assumed to be not guilty (i.e. the 

“presumption of innocence”). 

2.) The judge and/or jury then decide how much the presented evidence disinclines them 

to continue believing in the innocence of the defendant.

3.) This notion of “how much the judge and/or jury disbelieve in the innocence of the 

defendant” is then compared to a legal standard for burden of proof (e.g. some 

evidence, reasonable suspicion, preponderance of the evidence, clear and convincing 

evidence, beyond reasonable doubt, etc.). Based on the amount of evidence collected 

and the legal standard being used, the defendant is then found to be “guilty” or “not 

guilty” of the crime for which he was charged. Note that a defendant is never found 

by a judge or jury to be “innocent”. 

In the classic two-sample location t-test the sample data is used to estimate the mean and 

standard deviation of the two groups. The means and standard deviations are used to calculate 

the t-statistic, which is then compared to a percentile from the known t-distribution. The equation 

for calculating the t-statistic is shown below. Note that the calculation is simply the difference 

between the two sample averages (  and ), scaled by estimates of variability (  and ) and 

the respective sample sizes of the two groups (  and ). Assumptions about normality allow us 

to know the exact distribution of this test statistic, . 

 

 The two-sample location t-test is an example of a parametric test, a statistical test that 

makes assumptions about the underlying probability distribution. In the t-test, we estimate 

population parameters (mean and standard deviation) and we assume that the underlying 

populations are normally distributed (or, at least, approximately normal).  Figures 1 and 2 

provide a qualitative description of a parametric two-sample test. In Figure 1, there are two data 

samples: the blue circles are univariate (1-dimensional) observations that belong to Group 1 and 
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the red triangles are univariate observations that belong to Group 2. In a two-sample test, we 

want to determine if these two groups of observations are statistically different.  

 
Figure 1: Two groups of univariate observations (blue circles and red triangles) plotted on a 

graph 

In Figure 2, the sample means and variances of each group are used to estimate the 

underlying populations as normal distributions (“bell curves”). From a qualitative perspective, 

we then decide whether or not these two groups seem to come from different underlying 

population distributions, depending on the degree of overlap between the two bell curves.
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Figure 2: Two bell curves plotted as estimates of the underlying probability distributions 
 

 Unfortunately, these sort of parametric approaches to two-sample testing are subject to 

some notable limitations, namely multi-variation and model assumptions. Multi-variation refers 

to the idea that real-world processes are often best described by more than one attribute. For 

instance, overall human health might be appropriately modeled by blood pressure, whereby a 

very high or very low blood pressure reading may be an indicator of poor health. However, it is 

likely that a collection of different attributes, such as blood pressure, age, weight, smoking 

habits, exercise habits, family history, and respiratory rate, would provide a much better model 

of overall human health. The problem with parametric tests is that the ability to estimate 

parameters well is degraded in higher dimensions. In other words, as the number of attributes 

increases, a much greater amount of data is needed to create a useful model. In fact, if the 

number of attributes exceeds the number of collected observations, which is a realistic possibility 

in many practical applications, it is not even mathematically possible to use some parametric 

models for two-sample testing.

 The second limitation of parametric testing, model assumptions, refers to the concept that 

the power of a parametric test depends on how well model assumptions are satisfied. The 

problem is that distributional assumptions are often difficult to justify in higher dimensions. In 
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the one-dimensional case, graphical tools such as a quantile-quantile plot may be used to assess 

if a set of data was plausibly drawn from some theoretical distribution, such as a normal 

(Gaussian) distribution. However, there are no such graphical tools for reliability determining if 

a multi-dimensional data set (e.g. 100-dimension data) was drawn from a known multivariate 

distribution (e.g. 100-variate normal distribution). One approach to overcome these major 

limitations is to use nonparametric testing. 

 A nonparametric test is a statistical test that does not rely on assumptions that the data are 

drawn from a given probability distribution. Compared to parametric tests, these nonparametric 

tests are much more robust and widely applicable. They can readily accommodate a large 

number of covariates, and they may be used when very little is known about the underlying 

probability distributions. In many cases, such as the graph-theoretic approaches discussed in this 

paper, two-sample nonparametric tests are intuitively straightforward. However, test power for 

multivariate cases invites room for improvement. Put simply, test power is the ability to detect a 

difference between two groups when a difference actually exists. 

In this research, we are interested in exploring graph-based nonparametric approaches to 

two-sample statistical testing. Figure 3 displays a very simple example of a two-dimensional case 

where 20 observations are divided into two equal-sized groups labelled “1” and “2”, and the 

quantitative covariates x and y are plotted on the horizontal and vertical axes. The problem is to 

determine if Group 1 is statistically different from Group 2. 
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Figure 3: Example of bivariate quantitative data where the problem is to determine if 
Group 1 is statistically different from Group 2. 

Most approaches to solve this problem involve some notion of specifying interpoint 

dissimilarities (i.e. how far is the upper-left-most observation from the lower-right-most 

observation?) In this particular case, any metric on  might be a reasonable dissimilarity 

measure. Many approaches also involve assumptions about the distributions which generate the 

covariates. 

 In contrast, Figure 4 shows a less simple (but still fairly simple) example of a four-

dimensional case where groups are labelled “1” and “2”, and the four covariates are x (horizontal 

axis; quantitative), y (vertical axis; quantitative), color (blue or red; categorical), and shape 

(triangle, square, or circle; categorical). The problem is to determine if Group 1 is statistically 

different from Group 2. Again, most approaches to solve this problem involve some notion of 

specifying interpoint dissimilarities, but this case is complicated by the fact that it is not as clear 

how to incorporate color and shape into the dissimilarity measure. 
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Figure 4: Example of four-variate mixed data where the problem is to determine if Group 1 is 

statistically different from Group 2. 
 

Our research seeks to investigate and improve upon some of the latest solutions to 

problems like this one, but in the more challenging cases where 

- the number of observations, N, may be very large, 

 - the number of covariates, dim, may be very large, 

 - little is known about underlying probability distributions of two groups F and G, 

 - there may be no natural dissimilarity measure available. 

Specifically, we aim to validate, refine, and extend results on graph-based two-sample tests 

which are described in the following section, the first by Friedman and Rafsky (FR1979), the 

second by Rosenbaum (Ro2005), the third by Ruth (Ru2014) and the fourth by Chen and 

Friedman (CF2017). All of the approaches convert a set of observations into a particular 

weighted, undirected graph, and then count graph edges in a particular way to identify whether a 

group difference exists. One of the main goals of this research is to find the most efficient way to 

build graphs on a set of observations that contain informative edges which enable detecting a 

difference between two groups of data. 

 Our work towards these ends is organized as follows: In Section II, we formally 

introduce the two-sample problem in the context of a graph-theoretic setting. We then explore 
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the theoretical underpinnings of this problem through a review of recent approaches in relevant 

statistical literature. This section culminates with a brief discussion of a new dissimilarity 

measure based on tree-clustering. In Section III, we discuss the motivation behind our proposed 

improvements to current methods, namely the rationale to increase the density of optimal 

subgraphs used in these graph-based tests. We then propose the use of an alternative optimal 

subgraph based on shortest edges. In Section IV, we validate and refine the results of test power 

simulation studies from a key journal article published in 2017 in the Journal of the American 

Statistical Association. We then use those refined power estimates to investigate the effects of 

increasing subgraph density on test power and computational costs as well as to compare 

competing state-of-the-art methods under the same test conditions. We conclude this section by 

applying a newly-proposed dissimilarity measure for mixed data, “treeClust”, to a real-world 

medium-sized data set consisting of test results for patients, with or without a heart condition, 

undergoing angiography at the Cleveland Clinic in Ohio. In Section V, we introduce a new 

statistical test for the first time: the Cumulative Cross-Count (CCC) test. We show that the CCC 

test is a competitively powerful, user-friendly, nonparametric, multivariate test. We then derive 

moment information and employ permutation approaches to approximate p-values. Lastly, we 

compare the CCC test to the best existing parametric and nonparametric approaches and explore 

its practical efficacy using a real-world large-sized data set consisting of features extracted from 

electric current drive signals from a drive which has intact and defective components. In Section 

VI, we summarize all of our findings and highlight opportunities for future work within the field 

and on the CCC test in particular. 
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II.          PROBLEM BACKGROUND 
 
A. PROBLEM FORMULATION 

Consider independent observations in two distinct groups of sizes  and , 

respectively. So,  Each observation is drawn from the same probability distribution 

as all other observations in that same group. Formally, we call the groups  and 

, where each  is drawn from distribution  for  and from 

distribution  for . The  may have any number of attributes; we will use 

 to denote the number of attributes. For example, if the  measure the height, weight, and 

hair color of two groups of Midshipmen where 20 are male and 10 are female, then 

, and   does not depend on . The covariates may be quantitative or 

categorical. Assume there exists some function  that measures dissimilarity between 

observations; that is  if ,  is small if  and  are “close”, and  

is large if  and  are “distant.” We will develop a test statistic  whose distribution can be 

derived (or approximated) for the case , and is unusually small or large when . 

Furthermore, we would like T to have no dependence on  or . 

We will restrict our work to graph-theoretic approaches, which generally adhere to the 

following setting: 

- Each observation is considered to be a vertex in a graph . 

- Each pair of observations is an (undirected) edge of . 

- Edge weights are assigned based on interpoint dissimilarities (as determined by ). 

In our setting,  is a complete weighted graph, which means that every vertex is connected to 

every other, and every connecting edge has a weight (i.e., dissimilarity value) assigned to it. A 

variety of test statistics  can be found by considering , a subgraph of  that is optimal by 

some measure. In the ensuing discussion, we will use the following notation throughout: 

 number of edges in  that connect vertices in  to vertices in  

 number of edges in  that connect vertices in  to vertices in ; 

 number of edges in  that connect vertices in  to vertices in . 

In other words,  is the number of across-group edges,  is the number of within-group edges 

for the first group, and  is the number of within-group edges for the second group. A 
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foundational concept in this setting is that under the null hypothesis of no group difference (i.e. 

our default assumption that the distributions F and G are the same) each vertex is equally likely 

to be paired in  with any other vertex.  

 

B. RECENT GRAPH-THEORETIC APPROACHES TO TWO-SAMPLE  
          STATISTICAL TESTING 

1. Friedman and Rafsky (FR1979) 

 The first consequential two-sample test in this setting was introduced by Friedman and 

Rafsky (FR1979). FR1979 proposes the use of a minimum spanning tree (MST), which is a 

subset of edges of a connected, edge-weighted undirected graph (i.e. a subgraph) that connects 

all vertices together (“spanning”), without any cycles (“tree”) and with the minimum possible 

total edge weight (“minimum”). Refer to Appendix 1 for a review of basic graph theory 

definitions and a more detailed discussion of minimum spanning trees. FR1979 lets  be a 

minimum spanning tree (MST) of , and uses the test statistic 

. 

The quantity can be interpreted as the number of within-group clusters of . Figure 5 

provides a visual representation of how an MST is constructed on a set of observations and then 

decomposed into within-group clusters, or subtrees.  Red dots and blue dots may be thought of as 

observations from  (Group 1) and  (Group 2), respectively.  

 
        Plot of Observations                 Construction of MST         Decomposition into Subtrees 

 
Figure 5: Visual representation of how an MST is constructed on a set of observations and then 

decomposed into subtrees. In this case, there are 29 subtrees ( ) and the expected 
number of subtrees is 26 ( , based on ). This is not strong evidence of a 

group difference. 
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The null hypothesis is rejected for small values of , which makes this test essentially a 

multivariate extension of the Wald–Wolfowitz runs test. In other words, if the two groups are 

actually different, we would expect observations from  to be preferentially closer to other 

observations from  than to those from . Figure 6 provides another visual representation of 

how an MST is constructed on a set of observations and then decomposed into subtrees; 

however, in this case, there is much stronger evidence of a group difference. As before, the red 

dots and blue dots may be thought of as observations from (Group 1) and (Group 2), 

respectively. 

 

        Plot of Observations                 Construction of MST         Decomposition into Subtrees 

Figure 6: Visual representation of how an MST is constructed on a set of observations and then 
decomposed into subtrees. In this case, there are 8 subtrees ( ) and the expected number 

of subtrees is 26 ( , based on ). This is strong evidence of a group 
difference. 

The null distribution of  does not depend on the distribution of  or , but is 

conditional on the structure of . Friedman and Rafsky showed that, under the null hypothesis, 

the test statistic  has expected value 

 

and variance 

 

where is the number of adjacent edge pairs in the MST, which depends on the topology of the 

minimum spanning tree and is determined by the node degrees. Refer to Appendix 2 for a 

derivation of the expected value and variance of . Like the Wald–Wolfowitz runs test, 
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however, the power of  can be somewhat weak, which means that this test is not very good at 

detecting group differences when they actually exist. To improve test power, FR1979 considers a 

more complicated  that consists of the union of two or three disjoint MSTs. The same test 

statistic on this more complicated graph improves test power. This idea of using denser graphs 

will be an important part of our work. 

2. Rosenbaum (Ro2005) 

 Rosenbaum (Ro2005) takes a similar approach to this problem, but uses as  a 

minimum-weight non-bipartite matching on , which is the lowest-weight spanning subgraph of 

 for which the degree of each vertex in  is exactly 1. In other words, Rosembaum’s 

minimum-weight non-bipartite matching is the cheapest way (“minimum-weight”) to connect 

every observation to exactly one other observation (“matching”), without regard as to whether an 

observation is from  or  (“non-bipartite”). Strictly speaking, N must be even for  to be a 

perfect matching, but odd  may be easily accommodated. The test statistic is 

 

Figure 7 shows an example of Rosenbaum’s minimum-weight non-bipartite matching on a set of 

20 bivariate observations in two groups (red circles and blue triangles). Ro2005 proves that the 

exact null distribution of  can be expressed in closed form as a relatively simple 

combinatorial expression that depends only on , , and , but not on  or  Specifically, 

Rosenbaum shows 

 

The null hypothesis is rejected for small values of . With the same logic as before, if the two 

groups are actually different, we would expect observations from  to be preferentially closer to 

other observations from  than to those from . The fact that Ro2005’s is an exact, 

distribution-free test is attractive but, like the FR1979 test, Ro2005 test power is somewhat 

weak.  
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Figure 7: Example of a minimum-weight non-bipartite matching on a set of 20 bivariate 
observations in two groups (red circles and blue triangles), each containing 10 observations. 

3. Ruth (Ru2014) 

Ru2014 extends Ro2005’s work by using a similar but denser (i.e., more edges)  than 

Ro2005: For even , pick an integer  and let  be a minimum-weight -regular 

spanning subgraph, which is the lowest-weight spanning subgraph of  for which the degree of 

each vertex in  is . (Odd N may be accommodated as in Ro2005.) Note that for  this is 

the same as the Ro2005 case. The associated test statistic is defined as 

 

Figure 8 shows an example of a minimum-weight 3-regular spanning subgraph on 20 bivariate 

observations in two groups (red circles and blue triangles). The plot shows the graph  with 

respect to Euclidean distance (i.e., distance as measured by a ruler) for ; solid edges are 

cross-group edges and dashed edges are within-group edges. For this particular example, 

  Like  and the null hypothesis is rejected for small values of . 
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Unlike the null distribution of  may not necessarily be expressed exactly for . 

However, Ru2014 shows that, under the null hypothesis, the test statistic  has expected value 

 

and variance 

 

Refer to Appendix 3 for a derivation of the expected value and variance of . Approximate p-

values for  may be computed easily for fairly large  using a permutation test on the 

observation group labels (for example, the p-value for the case in Figure 8 is approximately 

0.11). For larger ,  can be approximated using the normal distribution. The main advantage 

of this test is that it has been shown to have impressive power over a broad range of alternatives 

(Ruth, D. 2014). 

 
Figure 8: An example of a minimum-weight 3-regular spanning subgraph (3-MWSS) on 20 

bivariate observations in two groups (red circles and blue triangles), each containing 10 
observations. 
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4. Chen and Friedman (CF2017) 

The three tests described so far tend to perform best against location alternatives (i.e., 

alternatives for which  and  differ in location; say, by a shift in mean). They share a common 

pitfall; namely that their power can be very low against scale alternatives (i.e., alternatives for 

which  and  differ in scale; say, by a shift in variance). Very recently, Chen and Friedman 

published a new graph-theoretic test (CF2017) in the Journal of the American Statistical 

Association that exhibits high power for location or scale alternatives (and both). They consider a 

variety of   possibilities, including unions of a limited number of disjoint spanning trees or 

unions of a limited number of disjoint non-bipartite matchings, and they use the test statistic   

 

where  and  is the covariance matrix for the vector . This 

statistic is simply a centered and scaled measure of the joint deviation of  and  from their 

expected values. In this case, large values of  lead to a rejection of the null hypothesis. Again, 

approximate p-values for  may be computed easily for fairly large  using a permutation test. 

For larger ,  can be approximated using the chi-squared distribution. Interestingly, CF2017 

speculates that ought not to be overly dense. This is contrary to results in Ru2014 that indicate 

a dense  leads to better test power. 

 

C. A NEW DISSIMILARITY MEASURE BASED ON TREE- 
          CLUSTERING 

Finally, it is the case that every one of the tests described above relies on a given 

dissimilarity measure, . But for mixed data with many covariates, it is not necessarily clear what 

dissimilarity measure ought to be used. In effect, mixed data are datasets that include both 

quantitative and qualitative variables. While finding the distance between two numbers is generally 

straight-forward, finding the distance between two categories presents a much greater challenge. 

For example, for some individual attributes such as race, sex, hair color, and educational level, 

assigning an appropriate dissimilarity measure may be difficult. Without a good dissimilarity 

measure, mixed data may not contribute much to detecting whether or not a group difference exists 

in a two-sample test. A study of dissimilarity measures could constitute its own separate research 
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project; however, in this work we will explore the efficacy of a dissimilarity measure based on 

tree-clustering recently proposed by Buttrey and Whitaker (BW2015) in the context of graph-

theoretic two-sample tests. The BW2015 approach is as follows: For each covariate , 

construct a classification or regression tree modeling covariate  as the response variable and 

including all other covariates as predictor variables in the tree. After applying some pruning and 

discarding rules, a collection of  trees remains, where each observation is assigned to one 

leaf in each tree. The key idea is that observations are considered dissimilar with respect to a

particular tree when they fall in different leaves of that tree. Among many options for an associated 

dissimilarity measure is to define  

 

where  is the indicator function that observations  and  fall in different leaves of tree k.

That is, is the proportion of trees in which  and  fall in different leaves. This proposed 

measure has the great advantage that it can be used for quantitative, categorical, or mixed data. 

BW2015 suggests that it is also very resilient to noise.   
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III.          MOTIVATION FOR PROPOSED IMPROVEMENTS 
 
 

We propose that increasing the density of the subgraphs used in these graph-based two-

sample tests leads to impressive improvements in statistical test power. Although past literature 

in this area of research has acknowledged that denser subgraphs lead to power improvements, we 

believe that they might have severely underestimated the value of graph density relative to its 

cost. In the context of these problems, graph density refers to the fraction of edges of the 

complete graph that are considered in a statistical test. Our rationale is that considering a greater 

number of edges will provide more “closeness information”. Of course, we expect that 

increasing graph density will come at the expense of more difficult optimization and more 

complicated test statistic null distributions, but we believe that these tradeoffs may be 

worthwhile in some cases. We will now discuss some of the recent work that has motivated this 

exploration into the tradeoffs between graph density, test power, and computational costs.

A. INCREASING SUBGRAPH DENSITY IN EXISTING LITERATURE 
In his extension of Rosenbaum’s Cross-Match Test, Ruth (Ru2014) explores the value of 

using optimal r-regular graphs with . In that paper, Ruth’s power simulations 

suggest that using greater graph densities improves the ability of the test to detect 

location changes on multivariate data. Figure 9 is a reproduction of a power graph 

featured in Ru2014. The graph provides power estimates for the mean cross-count test on 

5-variate normal data with  and . In addition to validating the results of 

Ru2014, this reproduction shows how increasing the graph density (  to to 

 to ) steadily increases the corresponding power estimates.  These power 

estimates are compared to the exact power of the Hotelling  test (the multivariate 

analog of the univariate t-test), which is the parametric test of choice for multivariate 

two-sample testing against location alternatives under assumptions of normality. 
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Figure 9: Power estimates for the mean cross-count (MCC) test at r = 1, 4, 10, and 30 
and exact power for Hotelling’s  statistic for 5-variate normal mean alternatives with m = 20 

and n = 40. These results validate results featured in Ru2014. 
 

Figure 10 is a reproduction of another power graph featured in Ru2014. This graph 

provides power estimates for the mean cross-count test on 5-variate lognormal data with  

and . In addition to validating the results of Ru2014, this reproduction also shows how 

increasing the graph density (  to  to  to ) steadily increases test power. 

In addition, Figure 10 reveals the relative power of nonparametric tests (in this case, the mean 

cross-count test) over the Hotelling  test when its assumptions are violated. When the 

underlying probability distributions are non-normal, as is generally encountered in real-world 

data, and the dimension starts to increase, nonparametric tests remain impressively robust. 

Collectively, these two figures seem to suggest that the use of greater graph densities ought to be 

explored in other areas of graph-based two-sample testing. We also note that Ru2014 does not 

provide computational time estimates for varying graph densities; however, these are explored 

and discussed in the next section (“Simulation Results”).  
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Figure 10: Power estimates for the mean cross-count (MCC) test at r = 1, 4, 10, and 30 
and exact power for Hotelling’s T2 statistic for 5-variate lognormal location parameter 
alternatives with m = 20 and n = 40. These results validate results featured in Ru2014.

As mentioned previously, CF2017 exhibits high power for both location or scale 

alternatives (and both); this test is considered to be among the best of its kind. In their approach, 

Chen and Friedman suggest building successive MSTs and then counting the deviation of each 

within-group edge count from the expected edge count and scaling appropriately. The 

simulations in CF2017 show that increasing the graph density from a 1-MST to a 3-MST (3 

successive MSTs) to a 5-MST (5 successive MSTs) leads to steady power improvements in all 

scenarios studied. We will save a more detailed discussion of these scenarios and results for the 

next section (“Simulation Results”). 

CF2017 acknowledges that, for the simulation settings studied, the 5-MST did not 

achieve the optimal point since the trend of increasing power from a 1-MST to a 5-MST had not 

been stabilized. However, rather than identify an “optimal” density, they note that computational 

costs increase with graph density and argue that the 5-MST is “good enough”, even for sample 

sizes in the hundreds or thousands. Furthermore, they suggest that making the similarity graph 

too dense might even provide “counter information”, which would reduce the power of the test. 



24

However, based on the simulation studies in Ru2014 and some intuition, we believe that, in some 

cases, there may be some significant value in building subgraphs more dense than a 5-MST. 

Having already discussed the findings from Ru2014, we will now build some intuition on graph 

density.  

The rationale of all of these graph-based tests is that, if two samples are from different 

distributions, observations would be preferentially closer to those from the same sample than 

those from the other sample. Thus, edges in these optimal subgraphs (MSTs, minimum-weight 

spanning subgraphs, etc.) would be more likely to connect observations from the same sample. 

These tests reject the null hypothesis if the number of between-sample edges is significantly less 

than what is expected (or, alternatively, if the number of within-sample edges is significantly 

more than what is expected). Therefore, the goal in building these graphs is to find an “optimal” 

graph density that captures as much of the “closeness information” as possible (i.e. the 

differences caused by the two samples being from different underlying distributions) without 

capturing too much random variability (which decreases test power). 

B. COMBINATORIAL JUSTIFICATION FOR INCREASING 
SUBGRAPH DENSITY 
Consider a two-sample test in which the number of observations in Group 1 is 500 (

) and the number of observations in Group 2 is also 500 ( ), giving a total sample 

size of 1000 ( ). This might be viewed a medium-sized data set. The number of edges 

in the complete graph of  observations is ; thus, the number of edges in the complete graph 

of 1000 observations is   edges. Recall that CF2017 recommends using a 5-

MST. Combinatorially, the number of edges in a 1-MST is , which means that the number 

of edges in a 5-MST is . Thus, the number of edges in a 5-MST on 1000 observations 

is   edges.  

By following the recommendation of CF2017 to build a 5-MST on a data set of 1000 

observations, we are only capturing   of the total number of available edges 

in the complete graph. Worse yet, this fraction continues to decrease as the total sample size 

increases. Intuitively, we contend that limiting ourselves to a 5-MST causes us to “miss out” on a 

great deal of available “closeness information”, especially as sample sizes increase.  
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Furthermore, we raise the conjecture that the “optimal” density for graph-based two-

sample testing (to maximize test power, without considering computational costs) is roughly 

50% of the total number of available edges in the complete graph. Theoretically, in graph-based 

statistical testing, any subgraph carries the same statistical information as its complement. In 

other words, using just the edges in the 1-MST on a set of observations is equivalent to using all 

of the edges except those in the 1-MST. This explains why any test on no edges has no power at 

all and any test on the complete graph also has no power at all (the complement of no graph is 

the complete graph). Similarly, for example, a subgraph containing 20% of the total number of 

available edges has the same information as a subgraph containing 80% of the total number of 

available edges. Following this line of thinking, our intuition leads us to believe that the 

“optimal” number of edges to use is roughly 50%, since the complement of a subgraph 

containing roughly 50% of the available edges is also roughly 50%. We contend that using 

optimal subgraphs to capture roughly 50% of the total number of available edges would, in a 

sense, maximize the amount of “closeness information” collected without gathering “redundant 

edges”. For reference, whereas CF2017 would recommend building a 5-MST graph on 1000 

observations, we might recommend building a = 250-MST graph. In the next section, 

we will explore some of the test power and computational time tradeoffs involved in this 

decision-making process. 

C. AN ALTERNATIVE OPTIMAL SUBGRAPH: SHORTEST EDGES 
Another proposed improvement to existing methods involves finding alternative optimal 

subgraphs that enable detecting group differences at lower computational costs. All of the graph-

building (i.e. “edge-gathering”) approaches discussed so far (MSTs, MWSSs, etc.) require 

integer programming optimization, which can be very time-consuming, especially when sample 

sizes are large. Historically, these graphs have been used in two-sample testing because they 

have some desirable structural properties. Using the known structure of these graphs enables us 

to derive theoretical moments (e.g. mean and variance) for a given test statistic under the null 

hypothesis. Deriving additional moments (e.g. skewness, kurtosis, etc.) provides a better 

estimation of the test statistic null distribution, which can make the computation of approximate 

p-values feasible. However, a statistical tool called permutation testing gives us a simple way to 

estimate the sampling distribution for any test statistic under the null hypothesis. Thus, 



26

permutation testing allows us to use optimal subgraphs that lack well-understood statistical 

structure and still compute approximate p-values for two-sample testing.  

We propose a graph-based approach that considers only a subset of shortest edges from 

the undirected complete graph on all observations. Intuitively, this approach seems to make 

sense since, if two samples are from different distributions, observations would be preferentially 

closer to those from the same sample than those from the other sample. In terms of 

computational times, this approach should be much faster than existing methods since its only 

requires a sorting algorithm instead of integer programming optimization. Furthermore, although 

the optimal subgraphs from such an approach lack a well-understood structure, permutation 

testing makes it possible to find approximate p-values. Put simply, permutation testing involves 

randomly permuting or “shuffling” the observation vertex labels many times (i.e. thousands) in 

order to approximate the test statistic null distribution and, in turn, compute p-values. 
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IV.          SIMULATION RESULTS 
 
 

In practice, the process of taking a set of observations from two groups and determining 

whether or not a statistically significant difference exists between those two groups involves 

four distinct steps. First, a data array (in which the rows are observations and the columns are 

attributes) is converted to a pairwise distance matrix by assigning an inter-point dissimilarity 

measure to the original data set. This dissimilarity measure may be Euclidean distance (distance 

as measured by a ruler), Gower distance (a commonly-used distance measure for mixed data), 

treeClust (a new distance measure based on classification or regression trees), or any other 

specified measure. The measure need not be a metric in a formal sense, but in practice it 

generally is one. Next, the pairwise distance matrix is used to create some sort of optimal 

subgraph of the complete graph. These optimal subgraphs may be minimum spanning trees 

(MSTs), minimum-weight spanning subgraphs (MWSSs), a collection of shortest edges, or any 

other specified subgraph. Then, a test statistic (e.g. Cross-Count, Scaled Within-Group Count, 

etc.) is computed using the edges from the optimal subgraph. Finally, permutation testing or an 

approximation of the test statistic null distribution is used to compute a p-value, which is then 

compared to a pre-specified significance level to conclude whether or not a difference exists. 

Figure 11 provides a basic flowchart of this process, along with some possible choice of test 

statistic, which we will describe next. 
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Figure 11: A basic flowchart showing the distinct steps from data array to test statistic. 

A. VALIDATION AND REFINEMENT OF RESULTS FROM TEST 
POWER SIMULATION STUDIES IN CF2017 
We began our simulations by validating and refining the power results published in 

Chen and Friedman (2017) for the classic Cross-Count ( ) test and their new Scaled Within-

Group Count ( ) test on minimum spanning trees. Power in this context refers to the probability 

of correctly identifying a group difference when a group difference exists. In the following 

study, we simulate under conditions identical to those in CF2017, but with 1000 simulations per 

case rather than with 100 per case as is used in the original paper. The estimated margin of 

error, , for these power estimates is 

 

where  is the estimated power ( ) and  is the number of simulations. Thus, 

using 1000 simulations instead of 100 decreases the margin of error by a factor of   
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To have a baseline for comparison in their simulation studies, Chen and Friedman chose 

the distribution to be multivariate normal in order to have the asymptotically most powerful 

tests based on normal theory – the Hotelling’s two-sample  test if assuming equal covariance 

matrices (“Hotelling’s ), and the generalized likelihood ratio test if not assuming equal 

covariance matrices (“GLR”). In addition to the two tests based on the normal theory, they also 

included in their comparison the new Scaled Within-Group Count test on a 1-MST, 3-MST, and 

5-MST (“ : 1-,3-,5-MST”), the classic Cross-Count test on MSTs (“  1-,3-,5-MST”) and on 

minimum distance non-bipartite pairings (“ : 1-,3-,5-MDP”), as well as the degree test on a 1-

MST (“deg 1”). All optimal subgraphs were constructed using the Euclidean distance. For a 

more detailed description of the above tests, see Chen and Friedman (2017). 

Table 1, Table 2, and Table 3 show power results for three types of group difference. All 

values in the tables are listed as percentages between 0 and 100; that is, the percentage of trials 

in which the test correctly detects a group difference. Table 1 shows results for two multivariate 

normal distributions where their means are different (Δ corresponds to the magnitude of mean 

shift). The results range from low dimension ( ) to high dimension ( ). Table 

2 shows results for two multivariate normal distributions where their standard deviations are 

different (σ corresponds to standard deviation difference). These results range from low 

dimension ( ) to medium dimension ( ). Table 3 shows results for two 

multivariate lognormal distributions differing in the location parameter (Δ corresponds to the 

difference of the two location parameters). Changing the location parameter affects both the 

mean and variance of a lognormal distribution, so this is both a location and scale alternative. 

For all cases, the specific location and/or scale alternative was chosen so that the tests have 

moderate power. The numbers in the upper rows of each table are the power results published in 

CF2017 using 100 simulation trials. The numbers in the lower rows of each table are our 

reproduction of a subset of those power results (specifically, from the two tests that use 

orthogonal minimum spanning trees). We chose to refine their power estimates using 1000 

simulation trials so that they could be used with greater confidence in future comparisons. The 

tables below serve to verify the reproducibility of and to refine the CF2017 power results. 
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Table 1: Validation and refinement of power results from CF2017 Table 1. Numbers indicate 
the percentage of trials with significance less than 5%. Normal data. The means of the two 

distributions differ in Δ in  distance. n = m = 50. 

  
Note in the above table that the Hotelling’s  test performs very well in low-to-

moderate dimensions since all assumptions for the Hotelling’s  test are satisfied. However, as 

the dimension increases, the power of the Hotelling’s  test diminishes. Furthermore, when the 

dimension becomes greater than or equal to the sample size (as in the above case where dim = 

100), the Hotelling’s  test cannot even be used. Table 1 above also shows that the Cross-

Count test and the Scaled Within-Group Count test are not severely limited by dimension size, 

and the classic Cross-Count test on MSTs slightly outperforms the new Scaled Within-Group 

Count test on MSTs for normal location differences. 
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Table 2: Validation and refinement of power results from CF2017 Table 2. Numbers indicate 
the percentage of trials with significance less than 5%. Normal data. The two distributions differ 

in . n = m = 50. 

 

 Note in the above table that, since the equal covariance matrices assumption for the 

Hotelling’s  test is not satisfied in this scenario, the Hotelling’s  test performs very poorly. 

The GLR test performs well in low dimensions (dim = 2) but its power decreases very rapidly as 

dimension increases due to issues with parameter estimation in high dimensions. The degree 

test, which has no power to detect normal location group differences (Table 1), shows 

impressive power in high dimensions but is still outperformed by the Scaled Within-Group 

Count test in all scenarios. Table 2 above also suggests that the Scaled Within-Group Count test 

on MSTs significantly outperforms the Cross-Count test on MSTs for normal scale alternatives. 

This highlights a well-known limitation of the Cross-Count test to detect scale differences 

among groups, especially in high dimensions. 
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Table 3: Validation and refinement of power results from CF2017 Table 3. Numbers indicate 
the percentage of trials with significance less than 5%. Product lognormal data, n = m = 50. 

 
 Table 3 above suggests that the Cross-Count test might outperform the Scaled Within-

Group Count test in low dimensions, but the Scaled Within-Group Count test becomes 

increasingly dominant as dimension increases.  

 

B. EXPLORING THE EFFECTS OF INCREASED SUBGRAPH 
DENSITY ON STATISTICAL TEST POWER 

 After refining and verifying the reproducibility of the power results of CF2017, we 

explored the effects of increasing subgraph density on statistical test power. Specifically, we 

simulated the same data from three tables discussed above; however, instead of building a 1-, 3-, 

and 5-MST, we investigated the value of building a 25-MST. Note that a 25-MST corresponds to 

50% of the available edges of the complete graph on 100 observations, since a 25-MST has 

 edges, while the total number of edges is  edges. Table 4 

below suggests that the Cross-Count test outperforms the Scaled Within-Group Count test for 

normal location alternations and also that increasing graph density improves test power in both 

cases for normal location alternatives. Next, Table 5 suggests that the Scaled Within-Group 

Count test outperforms the Cross-Count test for normal scale alternatives. This table also seems 

to show that increasing graph density improves power for the Scaled Within-Group Count test 

but is inconclusive for the Cross-Count test under normal location alternatives. Finally, Table 6 
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suggests that the Scaled-Within Group Count test generally outperforms the Cross-Count test for 

lognormal location alternatives. Additionally, this table seems to show that increasing graph 

density improves power for the Scaled Within-Group Count test but is inconclusive for the 

Cross-Count test under lognormal location alternatives. 

 

Table 4: Power estimates for normal mean alternatives using the Cross-Count test ( ) and the 
Scaled Within-Group Count test ( ) with different graph densities (1-, 3-, 5-, and 25-MST). See 

Table 1 for comparison. 

  

Table 5: Power estimates for normal scale alternatives using the Cross-Count test ( ) and the 
Scaled Within-Group Count test ( ) with different graph densities (1-, 3-, 5-, and 25-MST). See 

Table 2 for comparison. 
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Table 6: Power estimates for lognormal location parameter alternatives using the Cross-Count 
test ( ) and the Scaled Within-Group Count test ( ) with different graph densities (1-, 3-, 5-, 

and 25-MST). See Table 3 for comparison. 

 
Figure 12 shows the comparison of algorithm runtimes for a 1-, 3-, 5-, and 25-MST. Note 

that the x-axis corresponds to the total sample size ( ) and the y-axis corresponds to the 

logarithm of the computational times.  

 
Figure 12: Comparison of relative computational times needed to build a 1-, 3-, 5-, and 25-

MST 
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Contrary to the conjecture of CF2017, increasing graph density does seem to increase test 

power with no counter-information degradation, all the way up to including  edges, 

especially when using the Scaled Within-Group Count Test. As expected, however, increasing 

graph density also increases computational costs, and these costs become more pronounced as 

sample sizes increase. Ultimately, test users must take into consideration such factors as the need 

for test power, sample sizes under consideration, and available computing resources when 

determining the “optimal” graph density to use. As we will see shortly, our exploratory work 

aims to improve test power, decrease computational costs, and reduce user intervention. 

C. EXAMINING Ru2014 AND CF2017 IN COMPETITION UNDER THE 
SAME TEST CONDITIONS 

 We now turn to examine two recent tests with strong demonstrated performance 

characteristics, Ruth (2014) and Chen and Friedman (2017), in competition under the same 

conditions. Ru2014 and CF2017 each report impressive test power results but under different 

conditions. The goal here is to assist users in their choice among these two tests for use in 

application. Recall that Ru2014 recommends building minimum-weight spanning subgraphs 

(MWSS), while CF2017 recommends building successive minimum spanning trees (MST). Also, 

recall that Ru2014’s two-sample test is based on the number of cross-group edges, whereas 

CF2017’s test is based on the scaled number of within-group edges for each group. Table 7, 

Table 8, and Table 9 below compare the simulated power results for these two tests. The data 

used in these tests are from the same specified distributions discussed previously (first is normal 

location alternative, second is normal scale alternative, third is lognormal location alternative). In 

order to put these tests on a level playing field, we have chosen optimal subgraph densities that 

have approximately the same number of graph edges. For example, in the case of 100 

observations, a 10-MWSS has   edges and a 5-MST has 

  edges. These two numbers are close enough to infer that the two tests are using 

roughly the same “amount of dissimilarity information”. In the tables below, a bolded number 

indicates which case has the best power for that particular scenario.  
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Table 7: Comparison of power estimates for normal mean alternatives using the Cross-Count 
test ( ) with Minimum-Weight Spanning Subgraphs (Ru2014 approach) and the Scaled 

Within-Group Count test ( ) with Minimum Spanning Trees (CF2017 approach). 

 

Table 8: Comparison of power estimates for normal scale alternatives using the Cross-Count 
test ( ) with Minimum-Weight Spanning Subgraphs (Ru2014 approach) and the Scaled 

Within-Group Count test ( ) with Minimum Spanning Trees (CF2017 approach). 

 
Table 9: Comparison of power estimates for lognormal location parameter alternatives using 

the Cross-Count test ( ) with Minimum-Weight Spanning Subgraphs (Ru2014 approach) and 
the Scaled Within-Group Count test ( ) with Minimum Spanning Trees (CF2017 approach).

 
Figures 13, 14, and 15 show three comparisons of graph build times for comparable 

densities of MSTs and MWSSs. All of the MSTs were constructed in R using the function “mst” 

from the package “igraph”. The “mst” function from this package finds the minimum spanning 

trees of complete, undirected graphs using Prim’s algorithm. All of the MWSSs were constructed 

in R using the function “rRegMatch” from the package “AcrossTic”. In general, the problem of 

finding MWSSs of a complete, undirected graph can be solved using binary integer linear 
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programming. Since this particular falls into a special class of combinatorial optimization 

problems called “fractional -matchings”, the binary constraint may be relaxed and, with certain 

light conditions on , the linear relaxation guarantees binary solutions. Thus, these algorithm 

runtimes do not necessarily represent the theoretical fastest runtimes, but instead the amount of 

time that an R user would have to wait for these graphs to be built. In these figures, note that the 

x-axis corresponds to the total sample size ( ) and the y-axis corresponds to the logarithm of the 

algorithm runtimes. 

Figure 13: Comparison of run times required to build a 1-MST and a 2-MWSS 
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Figure 14: Comparison of run times required to build a 5-MST and a 10-MWSS 

 
Figure 15: Comparison of run times required to build a (N/4)-MST and a (N/2)-MWSS 
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As these figures show, CF2017 has much faster graph-building (“edge-gathering”) times 

than Ru2014. Based on the results in the tables above, Ru2014 seems to be the best choice if the 

user is looking for a location difference and if sample sizes are reasonably small. However, 

CF2017 seems to be the best choice if the user is looking for a scale difference or if sample sizes 

are large. This finding confirms the well-known fact that cross-count techniques, such as the one 

used in Ru2014, suffer against scale alternatives. If the user does not know what kind of 

difference might be present between the two groups, CF2017 seems to be the fastest, most robust 

option. However, the Ru2014 convention of using  edges seems best in all cases. 

 

D. EXPLORING A NEW, ALTERNATIVE OPTIMAL SUBGRAPH: 
50% SHORTEST EDGES 

 We now turn to our exploratory work in finding alternative optimal subgraphs that enable 

finding group differences at lower computational costs and possibly even with higher power. So 

far, from the previous simulation studies conducted, we have concluded that using the Scaled 

Within-Group Count Test (from CF2017) on a 25-MST (or, more generally, a k-MST that 

contains roughly 50% of the total edges from the complete undirected graph) is the most robust 

test-graph combination for maximizing test power. As such, those power results ( : 25-MST) 

serve as a benchmark for our exploratory work. In the previous section (“Motivation for 

Proposed Improvements”), we suggested building an optimal subgraph by collecting the 50% 

shortest edges from the complete undirected graph. Table 10 below compares the simulated 

power results of using the Scaled Within-Group Count Test on a 25-MST with the simulated 

power results of using the Scaled Within-Group Count Test on the 50% shortest edges. Observe 

that the power results for all scenarios are very similar. In terms of test power, neither approach 

seems to outperform the other with any significance. 
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Table 10: Comparison of power estimates for all scenarios previously studied using the Scaled 
Within-Group Count Test ( ) with Minimum Spanning Trees (CF2017 approach) and 50% 

Shortest Edges. Exploratory work. 

 
 However, Figure 16 shows the comparison of build times for similar densities of 

MWSSs, MSTs, and shortest edges. Note that the x-axis corresponds to the total sample size ( ) 

and the y-axis corresponds to the logarithm of the computational times. Combinatorially, the 

number of edges in a -MWSS is approximately equal to number of edges in a -MST, both of 

which are approximately equal to the  shortest edges. Moreover, each of these 

densities roughly corresponds to 50% of the total number of edges in the complete undirected 

graph on  observations. Observe that collecting the shortest edges (using a sorting algorithm) 

takes significantly less time than building other optimal subgraphs (using integer programming). 

Based on these results, our approach here (using the 50% shortest edges) appears to retain the 

test power characteristics of the best existing tests while substantially cutting down on 

computational costs. 



41

 
Figure 16: Comparison of computational times needed to build MWSSs & MSTs of 

comparable densities and to gather the equivalent number of shortest edges from the complete 
graph. 

E. REAL DATA EXAMPLE: EVALUATING THE PERFORMANCE OF 
TREECLUST ON THE CLEVELAND HEART DISEASE DATA SET 
All of the examples so far have come with “obvious” (or at least assumed) distance 

measures. We now turn to an exploration of treeClust, a newly-proposed dissimilarity measure 

for mixed data. Mixed data present challenges to determining interpoint dissimilarity. As 

discussed in the “Background” section, treeClust is a new measure to compute dissimilarity 

using classification and regression trees.  

The UCI Machine Learning Repository has documented heart disease diagnosis data for 

303 patients at the Cleveland Clinic foundation, plus 75 other attributes. We consider 5 

quantitative and 8 categorical explanatory variables with separate binary response (presence of 

heart disease; evident in 139 of 303 patients). Table 11 below provides an example of 4 

observations from the data set. Note that purple indicates quantitative explanatory variables and 

green indicates categorical explanatory variables.
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Table 11: Example of 4 observations from the Cleveland Heart Disease data set (quantitative 
explanatory variables in purple; categorical explanatory variables in green). 

 
Using these real-world observations, the two-sample problem becomes: Are the two 

diagnosis groups statistically different with respect to the explanatory variables? For these data, 

it turns out that the two groups are not very difficult to differentiate (even a two-sample t-test on 

most of the individual variables would suffice). To test our dissimilarity approach, we should 

make the problem more challenging by adding noise to the data; this will make the groups more 

difficult to differentiate. For all-numeric, nicely-scaled, noise- and outlier-free data, existing 

techniques (e.g. Euclidean, Gower) are hard to beat for classification applications. However, for 

noise, incomplete, mixed data – as is often encountered in real life – the treeClust dissimilarity 

measure does very well. To compare Gower and treeClust, we do the following: 

- Randomly permute some fraction of diagnosis labels, then estimate test power for  

             each fraction. 

- Add noise: Append a permuted copy of each of the 13 columns of data to the    

original data; do this 1, 20, 50, 100, and 150 times; resultant data frames have 26,   

273, 663, 1313, and 1963 columns. 

Figures 17, 18, 19, 20, and 21 compare the resilience of the well-known, existing Gower distance 

measure to the new treeClust distance measure. The x-axis corresponds to the number of 

unshuffled labels; this can be thought of as increasing the magnitude of the “distance” between 

the two groups (i.e. making the group different more apparent). The y-axis corresponds to 

estimated test power. When no noise is present, the existing Gower approach very slightly 

outperforms the new treeClust approach. However, when increasing amounts of noise are added, 

treeClust significantly outperforms Gower. 
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Figure 17: Comparison of power curves for treeClust distance measure (red dotted line) and 

Gower distance measure (blue dotted line), with 13 columns of noise added. 

 
Figure 18: Comparison of power curves for treeClust distance measure (red dotted line) and 

Gower distance measure (blue dotted line), with 260 columns of noise added.
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Figure 19: Comparison of power curves for treeClust distance measure (red dotted line) and 
Gower distance measure (blue dotted line), with 650 columns of noise added. 

Figure 20: Comparison of power curves for treeClust distance measure (red dotted line) and 
Gower distance measure (blue dotted line), with 1,300 columns of noise added. 
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Figure 21: Comparison of power curves for treeClust distance measure (red dotted line) and 
Gower distance measure (blue dotted line), with 1,950 columns of noise added. 

 These figures suggest that dissimilarity measures using tree clustering are useful in the 

context of mixed data, and especially so when noise is present. treeClust retained impressive 

power characteristics even when 1,950 columns of noise were added to 13 columns of original 

data. At this time, the use of tree clustering for dissimilarity measures is not very well-studied; 

this serves as a potentially fruitful area for future work. 
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V.          THE CUMULATIVE CROSS-COUNT (CCC) TEST 
 

 
 The findings presented thus far suggest that using denser subgraphs increases test power, 

but makes the test statistic null distribution difficult to characterize and is often more 

computationally complex. After comparing several different edge-counting approaches and test 

statistics, it is clear that there is an inherent tradeoff between test power (detecting a difference 

when a difference exists), mathematical complexity (characterizing the test statistic null 

distribution), computational costs (building optimal subgraphs and performing permutation 

tests), and user-friendliness (determining which test to use is a given scenario and optimal 

subgraph densities). We propose a promising new test that seems to provide a very competitive 

balance between the objectives above: the Cumulative Cross-Count (CCC) test. 

 

A. CCC TEST METHODOLOGY AND OVERVIEW OF 
 Instead of selecting a subset of edges with a very time-consuming optimality step and 

then counting the crossing edges on , the CCC test uses all edges for counting in the following 

manner: 

- Rank the edges with respect to weight (based on some dissimilarity measure) 

- Count the accumulation of cross-counts with respect to edge-weight order. 

- Consider large deviations from expected counts as evidence of a group difference. 

In the ensuing discussion, we will use the following notation throughout:  

Let 

 

and let 

 

So,  is the total number of accumulated cross counts up to the  ranked (shortest) edge. For 

our test statistic, we are interested in using the maximum deviation of  from the expected value 

of  under the null distribution, denoted , over all values of . Mathematically, 

this may be expressed as follows: 
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The Cumulative Cross-Count test rejects the null hypothesis of homogeneity for large .  

Figures 22-28 provide a visual description of the Cumulative Cross-Count test. Figure 22 

shows all of the edges in a particular undirected, complete graph lined up based on rank and 

color-coded based on whether they are within-group edges or crossing edges. In this example, 

the group labels are randomly shuffled so that there is no group difference. The figure confirms 

the notion that, under the null hypothesis (i.e. when there is no group difference), each edge is 

equally likely to be a within-group edge or a crossing edge. 

 
Figure 22: Graph of edges lined up by rank and colored black if within-group edges and red if 

crossing edges. No evidence of a group difference. 
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On the other hand, in Figure 23, the original group labels are preserved so that there is a 

group difference. This figure confirms the notion that, when a group difference exists, shorter 

edges are more likely to be within-group edges and longer edges are more likely to be crossing 

edges. Therefore, crossing edges initially accumulate at a slower rate when a group difference 

actually exists compared to when there is no group difference. This is the key idea behind the 

Cumulative Cross-Count test. 
 

 
Figure 23: Graph of edges lined up by rank and colored black if within-group edges and red if 

crossing edges. Strong evidence of a group difference. 
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Figure 24 shows a single simulated trajectory that shows the accumulation of crossing 

edges (i.e. cross-counts) as a function of edge rank for a graph with permuted labels. Observe 

that the slope appears to be roughly constant with a little bit of variability. Since each edge is 

equally likely to be a crossing edge when there is no group difference, cross-counts are 

accumulated at a constant rate as edge rank increases. Thus, the figure below shows one 

simulated trajectory of what we would expect the graph of cumulative cross-counts to look like 

when there is no statistically significant difference between two groups.  

 
Figure 24: Plot of a single simulated cumulative cross-count trajectory. Permuted group labels. 
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Figure 25 shows ten simulated cumulative cross-count trajectories on graphs with 

permuted labels, instead of just one as in the previous figure. By displaying several trajectories 

of graph-label combinations for which there is no group difference, this figure provides a rough 

qualitative description of the null distribution of , the cumulative cross-count, for a particular 

case where m = 8, n = 4, and  = 2. 

 
Figure 25: Plot of ten simulated cumulative cross-count trajectories. Permuted group labels. 

Rough qualitative estimation of the null distribution of . 
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Figure 26 shows the same ten cross-count trajectories (for permuted group labels) from 

the previous figure as well as one cross-count trajectory when there is a mean shift magnitude 

of 5 and the actual group labels are preserved. As mentioned in the discussion for Figure 23, 

this figure reveals how cross-counts initially accumulate at a slower rate when there is an actual 

group difference compared to when there is no group difference. For our test statistic,  we 

are interested in the maximum deviation between the expected cross-count under the null 

distribution and the actual cross-count. 

 
Figure 26: Plot of ten simulated cumulative cross-count trajectories with permuted group labels 
and one simulated cumulative cross-count trajectory with correct group labels. Note how cross-

counts initially accumulate at a slower rate when there is an actual group difference (correct 
labels) compared to when there is no group difference (permuted labels). 
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Figure 27 provides a visual representation of the Cumulative Cross-Count test statistic, 

. Instead of plotting the cumulative cross-count (as we did in the previous figures) which 

has a straight diagonal trajectory under the null distribution, here we instead plot the deviation 

from the expected cumulative cross-count (which, under the null distribution, has a horizontal 

trajectory with mean 0). In this figure, it is easy to see the maximum deviation from the 

expected cumulative cross-count occurs at the 39th ranked edge and has an absolute value of 

11.9. This value is our test statistic, . 

 
Figure 27: Plot of ten simulated cumulative cross-count deviation trajectories with permuted 
group labels and one simulated cumulative cross-count deviation trajectory with correct group 
labels. Note that  corresponds to the absolute value of the maximum negative deviation. 
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While figure 27 depicts a relatively simple example where the total sample size is only 

12 (i.e. N = 12) and the observations are only 2-dimensional (i.e. dim = 2), Figure 28 shows a 

much more complex example where the total sample size is 200 (i.e. N = 200) and the 

observations are 100-dimensional (i.e. dim = 100). Instead of considering less than 70 total 

ranked edges as in the previous example, we now must consider almost 20,000 edges. Even so, 

the overall notion of the Cumulative Cross-Count test remains the same: cross-counts initially 

accumulate at a slower rate when there is an actual group difference compared to when there is 

no group difference. Collectively, the colored lines provide a rough estimate of the null 

distribution of  because the group labels were permuted and randomly assigned. The test 

statistic, , allows us to characterize exactly how different the cumulative cross-count 

trajectory on our actual data is from what we would expect if no group difference existed. A 

larger test statistic provides stronger evidence of a group difference. In this case, the test statistic 

 corresponds to the deviation at the ~  ranked edge. 

 
Figure 28: Visual representation of the Cumulative Cross Count (CCC) test. Two samples of 

100 observations were drawn from 100-variate normal distributions with a mean shift 
magnitude of 1.4. The black line indicates deviation from the expected cumulative cross-count 
vs. edge rank when group labels are correctly assigned to their respective groups. The colored 

lines indicate deviation from the expected cross-count vs. edge rank when group labels are 
permuted and randomly assigned to the two groups (20 permutations shown above). 
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B. DERIVATION OF THE MEAN AND VARIANCE OF  
Recall that 

 

The expected value, variance, and covariance of  may be derived as follows: 

  

since each edge is equally likely to be any rank under the under the hypothesis of homogeneity. 

  

As in the FR1979 and CF2017 cases, the variance of the statistic of interest, , depends on the 

number of adjacent edge pairs, , among the k shortest edges. That is, define 

 

To compute this variance, it is necessary to compute  for each . 

Thus, we must consider two cases: 

Case 1.  Edges  and  are incident.   

Edge  

Edge  

 

 

Case 2.  Edges  and  are non-incident.   

Edge 

 

Edge  

 

1 2 

1 2 

1 

2 

2 
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The mean of  is 

  

 
The conditional variance of  can be found as follows: 
 

 

 
 
In the first term,  is independent of , so 
 

 

The second term reduces to 
 

 

 

 

 

 
Hence, the conditional variance of  is 
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Figure 29 provides evidence that the above result is correct. Samples of size 10 and 30 

(i.e.  and ) are both drawn from a 5-variate standard normal distribution. The k 

shortest edges are computed and the theoretical variance (red line) is plotted over the 

corresponding sample variance (black dots), resulting from 2,000 node label permutations. It is 

clear that this theoretical curve (derived above) well captures the observed result from 

simulation. 

 
Figure 29: Overlaid plots of the theoretical and simulated conditional variance of  for two 
groups of size 10 and 30, respectively, drawn from a 5-variate standard normal distribution. 

C. COMPARING CCC TEST POWER TO EXISTING STATE-OF-THE-
ART TESTS USING SIMULATED DATA FROM CF2017 
We now compare the power of the Cumulative Cross-Count test to that of the best existing 

parametric and nonparametric approaches using the familiar simulated data from CF2017. In 

Table 12, we present CCC test power estimates for detecting normal location group differences. 

We also include the test power estimates of Hotelling’s  (the asymptotically most powerful test 

based on normal theory if assuming equal covariance matrices), S: 25-MST (the CF2017 approach 
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with optimal subgraph density improvements as suggested in this paper), and  50-MWSS (the 

Ru2014 approach with optimal subgraph density improvements as discussed in this paper). 

Table 12: Comparison of CCC test power estimates for detecting normal location group 
differences to the best available parametric and nonparametric tests. .  

2000 simulations. Approximate p-values found using permutation testing. 

 
Note in the above table that the Hotelling’s  test performs very well in low-to-

moderate dimensions since all assumptions for the Hotelling’s  test are satisfied. However, as 

the dimension increases, the power of the Hotelling’s  test diminishes. In higher dimensions, 

the new CCC test demonstrates very impressive power, outperforming the best available 

CF2017 approach and on par with the best available Ru2014 approach. These results suggest 

that the CCC test may be the best choice if the user is looking for a location difference between 

groups, especially in high dimensions.  

In Table 13, we present CCC test power estimates for detecting normal scale group 

differences. We include test power estimates for the same approaches as in the previous table, 

except instead of Hotelling’s  (which is very weak for scale alternatives) we use GLR (the 

asymptotically most powerful test based on normal theory if not assuming equal covariance 

matrices). 
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Table 13: Comparison of CCC test power estimates for detecting normal scale group 
differences to the best available parametric and nonparametric tests. . 

2000 simulations. Approximate p-values found using permutation testing. 

 
Note in the above table that the best available CF2017 approach outperforms all other 

approaches in every scenario. Even so, we see that the CCC test outperforms the best available 

parametric approach (“GLR”), except in very low dimensions. Moreover, the CCC test does not 

suffer nearly as much as the best Ru2014 approach against scale alternatives. These results 

suggest that the CCC test, although not the single most powerful test in these scenarios, retains 

acceptable power for detecting scale differences between groups. 

In Table 14, we present CCC test power estimates for detecting lognormal location group 

differences. We include test power estimates for the same approaches as in Table 12, because 

Hotelling’s  is the best parametric test for finding a group difference under these conditions. 
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Table 14: Comparison of CCC test power estimates for detecting product lognormal location 
group differences to the best available parametric and nonparametric tests. . 

2000 simulations. Approximate p-values found using permutation testing. 

 
Note in the above table that the best available Ru2014 approach outperforms all other 

approaches in every scenario. Even so, we see that the CCC test outperforms the best available 

parametric and CF2017 approaches, and its underperformance against the best Ru2014 

approach is not considerable. These results suggest that the CCC test, although not the single 

most powerful test in these scenarios, retains impressive power for detecting group differences 

in non-normal data. 

D. COMPARING ALGORITHM RUNTIMES BETWEEN CCC TEST 
AND EXISTING METHODS 
We showed in the previous section that, in terms of test power, the Cumulative Cross-

Count test is a peer competitor to even the most state-of-the-art two-sample statistical testing 

approaches. However, test power is only one of the factors that a user must consider when 

choosing the most appropriate test for his or her application. Another very important factor in 

these graph-theoretic approaches is the amount of time required to build the desired optimal 

subgraph. For instance, even the most powerful test can be useless if it takes an absurd amount of 

time or computing resources to run. Table 15 shows a comparison of algorithm run times needed 

to build various densities of minimum spanning trees, minimum-weight spanning subgraphs, as 
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well as to run the CCC test for different sample sizes. The dashes in the table below indicate that 

the particular time trial was manually terminated for taking an unreasonable amount of time. 

Table 15: Comparison of computational times (in seconds) needed to build various densities of 
minimum spanning trees (MSTs) and minimum-weight spanning subgraphs (MWSSs), as well 
as to run the Cumulative Cross-Count (CCC) test. All algorithm run times are represented in 

seconds. These times do not necessarily represent the theoretical fastest run times, but the 
amount of time an ordinary R user would expect to wait (based on available packages and 

normal computing power). 

The improvement in computational times of the CCC test over existing methods is 

incredible. For example, building a 375-MWSS on 750 observations (which uses 50% of the 

available edges from the complete, undirected graph) takes over 12,000 seconds, whereas the 

CCC test takes less than one-tenth of a second on 750 observations. In addition, running the CCC 

test on 10,000 observations takes just over 4 seconds; on the other hand, using any other sort of 

existing graph-theoretic approach (even a 1-MST) on 15,000 observations is not possible for an 

ordinary R user due to the very large amount of computer memory needed to store such a 

complex graph. Also note that, because of its design, the CCC test does not require the user to 

specify an optimal subgraph density. Instead, the CCC test considers every edge from the 

complete, undirected graph and does so with extreme efficiency. Based on its comparable power 

to existing state-of-the-art tests, its unmatched speed, and its overall user-friendliness, the 

Cumulative Cross-Count test appears to be among the best of its kind. 
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E. REAL DATA EXAMPLE: SENSORLESS DRIVE DIAGNOSIS DATA 
We now turn to explore the performance of the Cumulative Cross-Count test on a real-

world large-sized data set. The UCI Machine Learning Repository has documented features 

extracted from electric current drive signals from a drive which has intact and defective 

components. This Sensorless Drive Diagnosis quantitative data set includes 5,319 observations 

on 48 attributes (dim = 48), across 11 classes to be compared. We specifically investigate Class 2 

and Class 6, although the results below hold generally for any comparison of two classes in this 

data set. In Figure 30, we show the results of two-sample testing on a small subset of 

observations (m = n = 15) from the data set. The black lines represent average p-values over 

1,000 simulations using the univariate two-sample t-test on each individual attribute, the blue 

line represents the average p-value over 1,000 simulations using the multivariate CCC test on 

all attributes, and the red dashed line represents the significance level. 

Figure 30: Average p-values over 1,000 simulations on a small subset of observations (m = n 
= 15) from the Sensorless Drive Data. The black lines represent the average p-values on each 

individual attribute using the univariate two-sample t-test. The blue line represents the average 
p-value on the entire set of attributes using the multivariate CCC test. The red dashed line 

indicates the significance level (0.05). Note that only 3 of the 48 t-test average p-values fall 
below the significance level of 0.05, and the single CCC test average p-value is 0.01372. 
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 This result highlights a few notable advantages of the CCC test over existing parametric 

tests. The first advantage has to do with sample size limitations. In the above example, where the 

dimension (dim = 48) is larger than the sample size (N = 30), the multivariate Hotelling’s  test 

is not even an option. Instead, we are left with performing a univariate t-test on each of the 

individual attributes. This leads to the multiple testing problem, which occurs when one 

considers a set of statistical inferences simultaneously. The idea is that the more inferences are 

made, the more likely erroneous inferences are to occur. So, if we actually want to perform 48 

univariate t-tests simultaneously, this technique would require a stricter significance level (i.e. 

lower than 0.05) for individual comparisons, so as to compensate for the number of inferences 

being made. In the CCC test, we avoid the multiple testing problem because we are only 

performing a single two-sample test, one which simultaneously considers all of the attributes. In 

Figure 31 below, we perform the same tests as in Figure 30 but instead consider the entire set of 

observations (m = n = 5319). 

Figure 31: P-values on the entire set of observations (m = n = 5319) from the Sensorless Drive 
Data. The black lines represent the p-values on each individual attribute using the univariate t-
test. The blue line represents the p-value on the entire set of attributes using the multivariate 
CCC test. The red dashed line indicates the significance level (0.05). Note that only 22 of the 

48 t-test average p-values fall below 0.05, and the single CCC test average p-value is 0. 
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This result also highlights some additional advantages of the CCC test over existing 

parametric tests. In this case, where the sample size (N = 10,638) is larger than the dimension 

(dim = 48), we should be able to perform the multivariate Hotelling’s  test. The problem here is 

that, to find the Hotelling’s  test statistic, it is necessary to calculate the covariance matrix 

(which is a pooled matrix) and then invert it. When there is a high degree of correlation in the 

variables (as is present in the Sensorless Drive Data), the covariance matrix could be close to a 

singularity (the determinant near zero) and non-invertible. If the covariance matrix is non-

invertible, we cannot perform the Hotelling’s  test. There are some methods for “cleaning up” 

the data to make it suitable for the Hotelling’s . One option is simply to remove the highly-

correlated variables from the data matrix and to calculate the covariance matrix again until the 

matrix can be inverted; another option is to perform some sort of principal component analysis on 

the data to convert the correlated variables into a set of values of linear uncorrelated variables 

called principal components. The techniques are, at best, cumbersome and, at worst, beyond the 

scope of most individuals who use two-sample tests in their fields. On the other hand, the CCC 

test (along with, in this case, the treeClust dissimilarity measure) does not get impeded by 

correlated data. Since the multivariate Hotelling’s test is not an option without data 

manipulation, most users are left with performing the standard univariate t-test on each of the 

attributes. This brings us back to the multiple testing problem. Ultimately, the two-sample 

problem on this large-sized set of real-world data demonstrates not only the power of the CCC 

test but also its remarkable user-friendliness. The R code for the Cumulative Cross-Count test 

may be found in Appendix 4. 
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VI.     CONCLUSION & OPPORTUNITIES FOR FUTURE WORK 
 
 

In this paper, we propose innovations to increase the power of state-of-the-art graph-

theoretic two-sample statistics tests. These innovations yield promising results which strongly 

suggest that, in many cases, they outperform existing methods. Through a variety of simulation 

studies, we demonstrate that increasing graph density can lead to impressive improvements in 

test power. In addition, we show that using the shortest graph edges (which is computationally 

“cheap”) produces very similar power results to using other optimal subgraphs (which are 

computationally “expensive”). Our simulated competition between Ru2014 and CF2017 also 

provides useful insights on which test is best to use for a given scenario. We explore the 

noteworthy resilience of a new interpoint dissimilarity measure, treeClust, using a real-world 

data set with added noise. Lastly, we propose a promising new test, the Cumulative Cross-Count 

(CCC) test, with remarkable potential and derive some of its moment information. 

With this project coming to its conclusion, the body of work invites several possibilities 

for further exploring and extension. One opportunity involves investigating the impact of 

increasing subgraph density on two groups with unequal sample sizes. Thus far, our 

recommendations concerning “optimal” subgraph densities have only been tested on data with 

equal group sizes. Future work might explore how these recommendations hold up to data with 

unequal sample sizes and, if necessary, adjust or generalize the recommendations appropriately. 

Another opportunity lies in deriving additional moment information for . In this 

paper, we derive the mean and conditional variance of . However, recall that the test statistic 

for the Cumulative Cross-Count test is  While it is very unlikely that an 

exact null distribution for the CCC test statistic, , can be found, a possible acceptable 

alternative to finding an exact distribution would be finding a result which bounds tail 

distribution properties for . Relating the CCC test statistic to properties of a Brownian bridge 

appears to be a promising starting point. 

In some cases, the decision of which dissimilarity measure to use is even more important 

than the decision of which statistical test to use. In this paper, we show the impressive capability 

of treeClust to handle mixed, noisy, and correlated data. At this time, the use of tree clustering 

for dissimilarity measures is not very well-studied; this serves as a potentially fruitful area for 

future work. 
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Finally, in our two real-world data sets, the Cleveland Heart Data and the Sensorless 

Drive Diagnosis Data, the group differences were pretty substantial. In many cases, even a 

simple univariate two-sample t-test was sufficient for detecting a difference. To make this 

program more challenging, we added noise and/or limited the number of observations under 

consideration. It would be interesting and useful to apply our approaches, such as the CCC test 

with treeClust, to other real-world scenarios but where a group difference is much more subtle. 

Areas such as healthcare clinical trials, industrial quality assurance, and marketing campaign 

analysis have readily available data and provide excellent opportunities for future work.
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APPENDIX 1: BASIC GRAPH THEORY DEFINITIONS AND 
DISCUSSION OF MINIMUM SPANNING TREES 

 
 

We will begin by reviewing some basic terms from graph theory. In mathematics, graphs 

are mathematical structures used to model pairwise relations between objects. A vertex or node 

is the fundamental unit of which graphs are formed. Although the terms may be used 

interchangeably, we will exclusively refer to this unit as a vertex (or plural, vertices). An 

undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), 

while a directed graph consists of a set of vertices and a set of arcs (ordered pairs of vertices). 

All of the graph-theoretic approaches discussed herein use undirected graphs only. We say that 

an edge links the two vertices defining it and that it is incident on both of them. The degree of a 

node is the number of edges incident on it. 

The earliest and most well-known graph-theoretic approaches to the two-sample problem 

make use of a particular type of graph known as a minimum spanning tree. We will define some 

additional terms that are relevant to minimum spanning trees. A path between any two specified 

vertices is an alternating sequence of vertices and edges with the specified vertices as first and 

last elements, all other vertices distinct, and each edge linking the two vertices adjacent to it in 

the sequence. A connected graph has a path between any two distinct vertices. A cycle is a path 

that begins and ends with the same vertex. A tree is a connected graph with no cycles. A 

subgraph of a given graph is a graph which has all of its vertices and edges in the given graph. A 

spanning subgraph of a given graph is a subgraph which contains every vertex of the given 

graph. A spanning tree of a graph is a spanning subgraph that is a tree. Because of its structure, 

there is a unique path between every two vertices in a tree. Thus, a spanning tree of a given 

connected graph features a path between any two vertices of the given graph. 

An edge-weighted graph is a graph with a real number (weight) assigned to each edge. A 

minimum spanning tree (MST) of an edge-weighted graph is a spanning tree for which the sum 

of edge weights is a minimum. Orthogonal minimum spanning trees are simply additional 

minimum spanning trees of the same edge-weighted graph such that none of the edges from 

previous minimum spanning trees are reused. 

In the two-sample problem, we begin with the complete graph, which consists of the  

pooled sample data points (observations) in  (where  is the dimension size, or number 
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of covariates) as vertices, and edges linking all pairs of observations. By its combinatorics 

arrangement, the complete, undirected graph has  edges. If we consider the weight 

associated with each edge to be Euclidean distance, which is the ordinary “straight-line” distance 

between two points in space, or a generalized dissimilarity between the two vertices defining it, 

then the minimum spanning tree of this graph is the subgraph of minimum total distance 

(dissimilarity value) that provides a path between every two vertices. 

Minimum spanning trees have two notable properties that make them especially useful 

for application to the two-sample problem. First of all, because of its structure as a spanning tree, 

a minimum spanning tree always contains  edges. Secondly, because the sum of its edge 

weights are a minimum, the vertex pairs defining the edges represent observations that tend to be 

close to each other. These properties prove to be useful in developing test statistics and deriving 

moments of the test statistic null distributions. 

 We build all of our minimum spanning trees in R, which is one of the most widely used 

languages and environments for statistical computing and graphics, using the function “mst” 

from the package “igraph”. The “mst” function from this package finds the minimum spanning 

trees of undirected graphs using Prim’s algorithm. Prim’s algorithm is a heuristic (greedy) 

algorithm that operates by building the tree one vertex at a time, beginning with an arbitrary 

starting vertex, and at each step adding the cheapest possible link from the tree to another vertex. 

The output of this algorithm is a minimum spanning tree of the original weighted undirected 

graph.  

We can describe Prim’s algorithm informally as performing the following steps: 

1. Arbitrarily choose a single vertex from the graph. This initializes the tree. 

2. Grow the tree by one edge. Of all the possible edges that connect the tree to vertices 

outside of the tree, find the minimum-weight edge and transfer it to the tree. 

3. Repeat Step 2 until every vertex is in the tree. 

In building an optimal solution, Prim’s algorithm uses the greedy principle, which involves 

making the choice that is best at the current state. Although the greedy principle in general is not 

guaranteed to provide an optimal solution, it does in the case of Prim’s algorithm.  

 This is true because Prim’s algorithm maintains a set  with the following condition: 

Prior to each iteration,  is a subset of edges of some minimum spanning tree. Beginning with an 

arbitrary initial starting vertex, we determine the shortest (lowest cost) edge that connects that 
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vertex to another vertex. This edge is the first element of . At each subsequent iteration, we 

determine an edge , where  is a vertex inside the tree and  is a vertex outside the tree, that 

can be added to  such that the condition stated above is not broken. Thus, if  is a subset of 

edges of some minimum spanning tree before a given iteration, then  is a subset of 

edges of some minimum spanning tree before the following iteration. Since every vertex is added 

to the tree in this manner, therefore the output of this algorithm is guaranteed to be the minimum 

spanning tree containing every vertex of the original weighted undirected graph. Hence, it is 

optimal. 
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APPENDIX 2: DERIVATION OF THE MEAN AND VARIANCE 
OF  (FR1979) 

 
To find the mean and variance of  under the null hypothesis, we proceed using the 

following notation. Let  be the complete undirected graph  where the vertex set  

consists of the indices  and the edge set consists of all  pairs of vertices. 

Partition  into two sets  and , with  and , so . By convention, we 

say that a node is labeled  if it is an observation from Group 1 and a node a labeled  if it is an 

observation from Group 2. Build a minimum spanning tree (MST) on ; recall that this subset of 

 contains  edges. Number the  edges of the MST arbitrarily and define  

 as follows: 

 if the th edge links nodes from different samples. 

 otherwise. 
 

Let  be the total number of cross-group edges in the MST plus one. This is equivalent to the 

number of subtrees remaining after we remove every cross-group edge from the MST. The 

FR1979 test is considered to be a multivariate generalization of the Wald-Wolfowitz runs test; as 

such, we also may think of  as the number of runs in the MST. 

Then, 

  

Note that 

  

Now,  is the probability that the two nodes defining this edge are labeled  and  or  

and . In other words, this is the probability that the th edge in the MST is a cross-group edge. 

Since, under , each edge is equally likely to be a cross-group edge, finding these probabilities 

is a simple combinatorics argument: the total number of cross-group edges in  divided by the 

total number of edges in . Thus, these probabilities are 

  

so that 



70

  

and from  

  

This is the same result as in the univariate case (Wald-Wolfowitz, 1940).  

 

The variance of  under  can be calculated similarly. For the  random variables, we have 

that the variance of their sum is equal to the sum of their covariances. Thus, 

  

Note that the third equality comes from the fact that . 

The sum of the variances is computed directly as 

 

 

Note that, since  can only take on values of 0 or 1, . 

Now consider 

  

Observe that 

  

This probability depends on whether the th and th edges are adjacent or disjoint. If they are 

adjacent, the two edges are defined by three nodes and there are two possible label sequences for 

which :  or  with probabilities respectively 

  

and 

  

so that 
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If  and  are disjoint, there are four nodes defining the two edges and four possible labelings 

that lead to : , each with the same probability, 

so that 

  

Let  be the total number of adjacent edge pairs in the MST. The total number of edge pairs is 

. Combining this with , we get (after some algebraic simplification): 

 

 

 

The value of  depends upon the topology of the MST. Specifically, it is determined by 

the node degrees. In the univariate ( ) case, there are always two nodes of degree one and 

 nodes of degree two. In this case,  and  reduces to the Wald-Wolfowitz 

result. 

In the general case , MSTs with a variety of node degree values are possible 

and the variance of  under  depends on the underlying probability distributions. In order to 

make this a distribution-free test, we may condition on the observed MST of the pooled sample 

points. In other words, we may build an MST on , determine  (which is fixed for a particular 

MST), and then calculate the variance conditioned on . 
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APPENDIX 3: DERIVATION OF THE MEAN AND VARIANCE 
OF  (Ru2014) 

 
 For the following discussion, we assume  is even. If  is odd, we create a pseudo-

observation , with  = 0 for . Then, we optimally match the  

observations, and discard the one pair containing the pseudo-observation. This results in a 

matching with  pairs that minimizes the total distance between all matchings of the original 

 observations into  pairs which discard one observation. Rather than having separate 

notation for even and odd , we adopt a convention such that all of the notation always refers to 

the case of even , perhaps after discarding one observation (for odd ).  

 To find the mean and variance of  under the null hypothesis ( ), we proceed using the 

following notation. Let  be the complete undirected graph  where the vertex set  

consists of the indices  and the edge set consists of all  pairs of vertices. 

By convention, we write the pairs with smaller vertex first, so . 

Partition  into two sets  (“Group 1”) and  (“Group 2”), with  and , so 

. Denote  as the set of all edges with one vertex in  and the other in . We refer to 

these edges as crossing edges. Let  be the random variable that indicates whether the edge 

 is included in a minimum-weight r-regular subgraph, , with , where  is 

the node degree of each vertex. By the r-regularity of , for each  we have 

 

So,  

 

 
since the expected value of the sum of random variables is equal to the sum of their 

individual expected values by the linearity of expectation, 

 

since  can only assume values of 0 or 1. 
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But under , each edge is equally likely to be included in , so the summations above simplify 

to . Therefore, for all , 

and 

 

 
The total cross-count, , may be written  

Let  be the total cross-count, scaled by the degree of the minimum-weight r-regular 

subgraph. Thus,  

 

 
since there are  total crossing edges in the complete undirected graph, 
 

 
Finding the variance of  is slightly more complicated. For the  random variables, we have 

that the variance of their sum is equal to the sum of their covariances. Thus, 

 

 

Note that the third equality comes from the fact that . 

By substituting , the sum of variances is determined to be  
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The sum of covariances may be broken up into terms that include pairs of adjacent edges and 

terms that include non-adjacent edges (graphic for each term to be inserted): 

For any two adjacent edges  and , 

   
  So,  

 

 
 

 
by using the linearity property of expectations, this can be simplified to the expected 

value of their product minus the product of their expected values, 

 
 

 

 

 

  For any two non-adjacent edges  and , 

 

 

  So, 
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Combining , , and  yields 

 

 

 

  Therefore, the variance of the scaled total cross-count may be expressed as 
 

 
  Note that, when , the first and second moment results in  and  match the results in  

  Ro2005, as we would expect. 

 Simulation suggests that the null distribution of  is negatively skewed. Figure 32 

shows a particular example of this negative skewness, using a histogram with an overlaid 

standard normal distribution curve and a Normal Q-Q plot. Similar behavior has been observed 

over a variety of other conditions. This behavior suggests that using a normal approximation 

might be inappropriate because the probability of getting a value of 0.05 in the normal 

approximation is actually greater than 0.05 (i.e. greater probability of making type I errors). Even 

so, simulations in Ru2014 suggest that for sufficiently large  and possible certain conditions on 

, the null distribution of  is asymptotically normal, independent of distribution function . 
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Figure 32: Histogram of standard normalized simulated  (with overlaid standard normal 

distribution curve) and Normal Q-Q plot. This suggests that the null distribution of  is 
negatively skewed. 
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APPENDIX 4: R CODE FOR THE CUMULATIVE CROSS-
COUNT (CCC) TEST  
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